Results:
Sort Order:
Show:

Research Notes
The assessment and the management of the risks linked to insect pests can be supported by the use of physiologically-based demographic models. These models are useful in population ecology to simulate the dynamics of stage-structured populations, by means of functions (e.g., development, mortality and fecundity rate functions) realistically representing the nonlinear individuals physiological responses to environmental forcing variables. Since density-dependent responses …
Post Date: 2022-06-14 21:35:02
Author: Giorgio
Research Notes
The fall armyworm, Spodoptera frugiperda (J.E. Smith), is an invasive pest threatening crop production and food security worldwide. High concerns are linked to the potential establishment of the species in Europe. The high migratory capacity of S. frugiperda causes concerns about the potential impacts of transient populations invading new areas from suitable hotspots. In the present work, we developed …
Post Date: 2022-06-14 21:28:41
Author: Giorgio
Research Notes
Bacillus thuringiensis vegetative insecticidal proteins (Vip3A) have been recently introduced in important crops as a strategy to delay the emerging resistance to the existing Cry toxins. The mode of action of Vip3A proteins has been studied in Spodoptera frugiperda with the aim to characterize their binding to the insect midgut. Immunofluorescence histological localization of Vip3Aa …
Post Date: 2020-12-18 16:40:12
Author: Juan Ferré
Research Notes
  Bioinsecticides based on Bacillus thuringiensis have long been used as an alternative to synthetic insecticides to control insect pests. In this review, we focus on insects of the genus Spodoptera, including relevant polyphagous species that are primary and secondary pests of many crops, and how B. thuringiensis toxins can be used for Spodoptera spp. …
Post Date: 2020-12-18 16:14:28
Author: Juan Ferré
Research Notes
The bacterium Bacillus thuringiensis produces insecticidal Vip3 proteins during the vegetative growth phase with activity against several lepidopteran pests. To date, three different Vip3 protein families have been identified based on sequence identity: Vip3A, Vip3B, and Vip3C. In this study, we report the construction of chimeras by exchanging domains between Vip3Aa and Vip3Ca, two proteins …
Post Date: 2020-12-18 16:04:02
Author: Juan Ferré

Comments are closed.